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We derive constraints on a simple quintessential inflation model, based on a spontaneously broken
Φ4 theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and
by galaxy clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of
symmetry breaking must be larger than about 3 Planck masses in order for inflation to generate
acceptable values of the scalar spectral index and of the tensor-to-scalar ratio. We also show that the
resulting quintessence equation-of-state can evolve rapidly at recent times and hence can potentially
be distinguished from a simple cosmological constant in this parameter regime.

PACS numbers: 98.80.Cq

I. INTRODUCTION

The inflationary scenario, in which the Universe un-
dergoes a phase of accelerated expansion in its very early
moments, provides an attractive solution to the flatness
and horizon puzzles of the standard Big Bang cosmology.
In addition, via quantum fluctuations, it naturally pro-
vides the seed perturbations for later structure formation
in the Universe [1]. After inflation, reheating leads to a
radiation-dominated era, followed by a more recent epoch
in which the density is dominated by non-relativistic mat-
ter.

However, there is now solid observational evidence
from Type Ia supernovae (SNIa) that the Universe is un-
dergoing another burst of accelerated expansion; in the
context of General Relativity, this must be fuelled by
an unknown component with negative pressure, usually
called dark energy (DE) [2].

The simplest possibility for the DE is the cosmologi-
cal constant, Λ. Data from the cosmic microwave back-
ground (CMB) [3], large-scale structure [4], and SNIa
[5, 6] are all consistent with the ΛCDM model, a nearly
flat Universe with a cosmological constant and nearly
scale-invariant primordial perturbations. In the best-fit
ΛCDM model, the vacuum energy makes up 74% of the
critical density, and the remainder is non-relativistic cold
dark matter (CDM, 22%) and baryonic matter (4%).

While the cosmological constant is compatible with the
current data, the recognition that the Universe appears
to have undergone more than one period of accelerated
expansion points to the plausibility of alternative expla-
nations for the dark energy. In fact, there are no consen-
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sus particle physics models for either primordial inflation
or the recent acceleration of the Universe. A first step
out of our ignorance is often taken by introducing simple
models, usually involving scalar fields. We can then pro-
ceed to test these models against data and obtain con-
straints on parameters that we hope can be calculated
from a more fundamental theory. In this spirit, infla-
tion and dark energy are often modelled via scalar fields,
called the inflaton and the quintessence field.

In general, these two fields are treated as totally in-
dependent. In ref. [7], we introduced a simple, well-
motivated model that unifies these two fields into a single
complex scalar field. We briefly review this model below.

We start with the general, renormalizable Lagrangian
describing a complex scalar field Φ; with appropriate
choice of coupling constants, the associated global U(1)
symmetry is spontaneously broken at a high energy scale
f [8]. The broken symmetry generates a flat potential
for the phase of the complex field, ϕ, which at this stage
is a massless Nambu-Goldstone boson. At a much lower
energy scale, M << f , instanton or other effects ex-
plicitly break the residual symmetry, providing a small
mass for ϕ, now called a pseudo-Nambu Goldstone bo-
son (PNGB). The QCD axion, a by-product of a solu-
tion to the strong CP problem, is an example of this
phenomenon. PNGBs in the more general context are
also sometimes called axions, a usage into which we shall
lapse, but we emphasize that we are not here considering
the QCD axion.

The resulting low-energy effective Lagrangian is given
by:

L = ∂µΦ∂µΦ∗ − V (Φ) + M4[cos(Arg(Φ)) − 1] , (1)

with the renormalizable potential

V (Φ) = λ

(

ΦΦ∗ − f2

2

)2

. (2)
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Writing the complex field Φ as

Φ =
1√
2
φeiϕ/f (3)

we identify the modular (φ) and phase (ϕ) parts of Φ
with the inflaton and the quintessence fields. A model in
which the quintessence is such an axion-like PNGB field
was introduced by Frieman et al. [9]. The model con-
tains two mass scales, f and M , and one dimensionless
coupling constant, λ. As in the QCD case, we imagine
that the lower scale M is generated dynamically, by non-
perturbative effects, leaving f as the only fundamental
mass scale in the theory. As is usually done, we have set
the cosmological constant to zero.

In order for ϕ to serve as dark energy, it must have
not become dynamical until recently; otherwise, it would
now be oscillating on a timescale short compared to
the current Hubble time and would act instead as non-
relativistic dark matter [9]. Therefore we require

mϕ =
M2

f
<∼ 3H0 (4)

where H0 = 100 h km/s/Mpc is the Hubble parameter
today. On the other hand, for the energy density in the
ϕ field to have the correct order of magnitude to explain
the acceleration, we must have

M4 ≃ ρ(0)
c =

3H2
0M2

Pl

8π
. (5)

Combining these two requirements results in [9]:

f >
MPl√
24π

; M ≃ 3 × 10−3 h1/2 eV, (6)

where the Planck mass MPl = 1.2 × 1019 GeV.
This model was implemented in a hybrid inflation con-

text by Massó and Zsembinszki [10]. A model similar to
ours, in which the modulus field φ is responsible for infla-
tion and the phase ϕ produces dark matter, was studied
in ref. [11]. In models in which the axion-like field is
the dark matter, a high energy scale for the axion decay
constant f is also necessary, in order to suppress isocur-
vature fluctuations to acceptable levels. In our case, how-
ever, the axion field only becomes dynamical at such late
times that the bounds from isocurvature fluctuations do
not apply [12].

II. WMAP+SDSS CONSTRAINTS

The 3-year data set released by the WMAP collabora-
tion (WMAP3) [3] has been used by a number of authors
to constrain models of inflation [13, 14, 15, 16]. Of spe-
cial interest to us are the reported limits on the scalar
spectral index, ns, and the ratio of tensor to scalar per-
turbations, r. Using WMAP3 plus the large-scale power
spectrum of Luminous Red Galaxies (LRGs) in the Sloan

Digital Sky Survey (SDSS), Tegmark, et al. [17] derive
the marginalized constraints:

ns = 0.967+0.022
−0.020 ; r < 0.33 (@ 95% CL). (7)

Note that the above constraints were obtained in the con-
text of the ΛCDM model, i.e., assuming that the dark
energy equation of state is w = −1, and also assuming
spatial flatness, massless neutrinos, and no running of the
scalar spectral index with spatial wavelength, but allow-
ing for non-zero tensor perturbations. Dropping one or
more of those assumptions would weaken the constraints.

As shown in Fig. 19 of [17] (reproduced below in Fig.
1), under the assumptions above, a simple chaotic λφ4

inflationary model is marginally excluded at 95 % CL by
the WMAP3+SDSS constraints. Since our proposed in-
flation model approaches a λφ4 potential at large values
of φ, one might worry that it is also disfavored by current
data. We will see below that this is not the case in gen-
eral; rather, values of the fundamental mass parameter f
below a certain level are excluded.

In this model, inflation is driven by the modulus field
φ, since the potential energy associated with ϕ is smaller
by ∼ 112 orders of magnitude. The potential V (Φ) in
Eq.(2) in fact depends only on φ,

V (φ) =
λ

4

(

φ2 − f2
)2

. (8)

Working in the context of the slow-roll approximation,
where the field evolution is slow (φ̈ ≃ 0, φ̇ ≃ −V ′/(3H)),
we can define the usual slow-roll parameters ǫ and η [18]:

ǫ (φ) =
M2

Pl

16π

(

V ′ (φ)

V (φ)

)2

; (9)

η (φ) =
M2

Pl

8π

[

V ′′ (φ)

V (φ)
− 1

2

(

V ′ (φ)

V (φ)

)2
]

. (10)

Slow roll is a consistent approximation for V ′, V ′′ ≪
V (in Planck units) or equivalently for ǫ, η ≪ 1. In
particular, inflation ends when ǫ ≃ 1.

In our case we find

ǫ (φ) =
M2

Pl

π

φ2

(φ2 − f2)
2 ; (11)

η (φ) =
M2

Pl

2π

1

(φ2 − f2)
. (12)

Defining φe as the value of the field φ at the end of
inflation, ǫ (φe) = 1 we find two possible solutions:

(φe)
2

= f2 +
M2

Pl

2π

(

1 ±
√

1 + 4πf2/M2
Pl

)

. (13)

The solution with positive sign has |φe| > f and cor-
responds to large-field inflation; that is, the field starts
at |φi| > |φe| > f and slowly rolls to values close to
f until inflation stops. The solution with negative sign
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TABLE I: Large-field Inflation: For different values of the
vacuum expectation value f , we show the value of the scalar
field (φ50, φ60) when the present Hubble radius crosses outside
the horizon and at the end (φe) of inflation, all in units of the
Planck mass. nN and rN denote the corresponding values of
the scalar spectral index and the tensor-to-scalar ratio.

f φe φ50 φ60 n50 n60 r50 r60

0.1 0.581 4.04 4.41 0.941 0.951 0.313 0.262

1.0 1.32 4.48 4.84 0.946 0.955 0.280 0.237

3.0 3.40 6.17 6.49 0.954 0.961 0.229 0.195

5.0 5.29 8.06 8.37 0.956 0.963 0.207 0.176

has |φe| < f and corresponds to small-field inflation: the
field starts near the local maximum at |φi| < |φe| < f
and slowly rolls to values closer to f until the end of
inflation.

The number N of e-folds remaining until the end of
inflation in terms of the value of the field φN required to
accomplish this number of e-folds is given by:

N =

√
4π

MPl

∫ φN

φe

dφ
√

ǫ(φ)
=

π

M2
Pl

(

φ2
N − φ2

e − f2 ln
(

φ2
N/φ2

e

))

.

(14)
There is a bound on the maximum number of e-folds
between the time that the present Hubble radius leaves
the horizon and the end of inflation. The bound derives
from limits on the gravitational wave background (pro-
vided that the energy density of the Universe does not
drop faster than that of radiation after inflation) and is
given roughly by Nmax ≃ 60 [19, 20]. In the following
we will use N = 50 and 60 for illustration and denote the
corresponding field value by φN .

Once we solve Eq. (14) for φN , we can immediately
compute the spectral index of perturbations, ns, and the
ratio of tensor to scalar perturbations, r [14]:

ns,N = 1 − 4ǫ (φN ) + 2η (φN ) (15)

rN = 16ǫ (φN ) (16)

In Table I, we show the resulting values for ns,N and
rN for different values of the symmetry breaking scale f ,
for the large-field case, |φi| > f . For f < MPl, we have
φ >> f throughout inflation; in this limit, the potential
of Eqn.(8) is close to that of a pure λφ4 theory, and the
resulting values of ns and r are similar to those of the φ4

model. For larger values of f , φe/f is close to unity; in
this regime, one can expand the potential during inflation
around φ = f and find that it is closer to quadratic than
quartic. For f >∼ 3MPl, Fig.1 shows that the resulting

values of ns and r are consistent with the 68% limits from
WMAP3+SDSS LRG for values of N approaching 60.

At 95% CL, the parameter range f > 1MPl is allowed
by the current data.

Results for the case of small-field inflation, |φi| < f , are
shown in Table II. In this case, one can expand the po-
tential around φ = 0, resulting in V (φ) ∝ f4(1−2φ2/f2).

                   large field

λ(φ2 −f2 )2

                             small field

2 MPl

3 MPl

5 MPl

 5MPl

3 MPl

1 MPl

FIG. 1: Regions in the r vs. ns plane excluded by WMAP1 (in
red), WMAP3 (in beige), and by WMAP3+SDSS (in yellow),
from [17]. The two contours in the white region show those
allowed at 68% and 95% CL. Regions occupied by chaotic
inflation models with φ2, φ4, and φ6 potentials are indicated.
We have superimposed regions occupied by our model in the
large-field regime for f = 1, 3, and 5MPl (black, dashed) and
in the small-field regime for f = 2, 3, and 5MPl (green, dot-
dashed). Moving down these curves, the number of e-folds
before the end of inflation that the Hubble radius expands
outside the horizon varies from N = 50 to 60 (except for the
φ4 case, in which N = 64 was used).

For f <∼ MPl, φ60 is exponentially smaller than φe [21],
which is unnatural, especially since quantum fluctuations
impose a lower bound on the field amplitude. In fact, for
f < 0.8MPl, we find no solutions to Eqn. (14) in the
small-field case. In this regime, for φ60 ≪ f , one finds
ns ≃ M2

Pl/(πf2). As f increases, there is a transition
at f ≃ MPl, where the scalar spectral index gets sub-
stantialy closer to 1. As shown in Fig.1, consistency with
WMAP3+SDSS at 68% CL requires f >∼ 3MPl.

From Tables I and II and Eqns.(11,12), we see that
ǫ(φN ), η(φN ) ≪ 1 for most of the cases studied, validat-
ing the use of the slow-roll approximation.

The fact that the symmetry-breaking scale f must be
near MPl is potentially appealing from the theoretical
point of view, since the latter is a fundamental mass
scale of gravitational origin. However, the observational
constraint that f must be several times larger than the
Planck mass could raise concern about the validity of the
semi-classical field theory approach and about the possi-
bility of large gravitational corrections to the theory that
could destroy the requisite flatness of the scalar field po-
tential. In this context, we note that models with two [22]
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TABLE II: Small-field Inflation: For different values of the
vacuum expectation value f , we show the value of the scalar
field (φ50, φ60) when the present Hubble radius crosses outside
the horizon and at the end (φe) of inflation, all in units of the
Planck mass. nN and rN denote the corresponding values of
the scalar spectral index and the tensor-to-scalar ratio.

f φe φ50 φ60 n50 n60 r50 r60

1.0 0.757 0.0002 0.00004 0.682 0.682 0.0 0.0

2.0 1.74 0.163 0.110 0.918 0.919 0.00862 0.00385

3.0 2.73 0.770 0.639 0.951 0.956 0.0428 0.0282

5.0 4.73 2.49 2.29 0.961 0.967 0.0893 0.0686

or more [23] axions have been proposed, in which a linear
combination can result in an effective scale f larger than
MPl while the fundamental mass scales in the theory are
below the Planck mass.

III. THAWING THE QUINTESSENCE FIELD

It is interesting to study the consequences of this con-
straint on the symmetry breaking energy scale f for the
quintessence PNGB field in our model, described by the
Lagrangian

L =
1

2
(∂µϕ)2 − M4[1 − cos(ϕ/f)]. (17)

The quintessence behaviour is determined by three pa-
rameters, f , M , and the initial value ϕi of the field when
it was dynamically frozen in the early Universe. Once we
fix values of two of the parameters, for instance f and M ,
the value of ϕi is determined by requiring that Ωϕ ≃ 0.7
today. Since ϕ only became dynamical at late times, the
parameter M4 must be of the order of the critical den-
sity today, cf. Eqn.(5), or larger. The steepness of the
quintessence potential is measured by the mass of the ϕ
field, mϕ ≃ M2/f . The larger the mass of the field, the
earlier it can evolve, and therefore the larger the devia-
tions of its equation of state from that of a cosmological
constant, w = −1. We show this behaviour in figure
2 by numerically solving the equations of motion for ϕ.
We fix f = 5 MPl, in keeping with the WMAP+SDSS
constraints, and simultaneously vary M and ϕi to keep
Ωϕ = 0.7 today, following [24]. We see that the PNGB
quintessence equation of state w(z) can evolve signifi-
cantly at recent times for large values of M4, making
it distinct from a simple cosmological constant, as em-
phasized recently in the context of the so-called see-saw
cosmology [25]. For fixed f , the value of M is bounded
from below by the requirement that the quintessence field
energy be large enough to dominate the Universe today
and from above by the requirement that it drive acceler-
ated rather than decelerated expansion. As pointed out
in [9, 25], one can achieve evolution of the sort shown
in Fig. 2 without fine-tuning the mass parameters of

the model. Such behavior is consistent with current con-
straints on the evolution of w(z) (see, e.g., [26]) but could
be tested by future projects aimed at probing the dark
energy.

1 2 3 4
z

-0.99

-0.98

-0.97

-0.96

-0.95

-0.94

-0.93

wHzL

FIG. 2: Evolution of the quintessence equation of state pa-
rameter w(z) as a function of redshift for f = 5 MPl,
Ωϕ = 0.7, and M4 = 10(5.4), 30(3.2), 50(2.5), and 100(1.8)

times ρ
(0)
c (from bottom to top curves). The numbers in

parentheses are the initial values of the field ϕi in Planck
mass units for the corresponding value of M .

IV. CONCLUSIONS

In this Brief Report, we have studied the constraints
on a simple model of quintessential inflation previously
proposed by us [7] that arise from the WMAP3 CMB
and SDSS LRG data. We find that the effective scale of
symmetry breaking, f , must be larger than about 3 MPl

in order to satisfy the constraints on the scalar spectral
index and the tensor-to-scalar ratio from inflation. With
these constraints, the resulting quintessence equation of
state parameter w(z) can nevertheless evolve rapidly at
recent times, z <∼ 1 − 2, depending on the value of the
induced explicit symmetry breaking scale M , an example
of a ‘thawing’ dark energy model. Such models can be
tested by precision probes of the dark energy equation of
state expected over the coming decade.
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